レーシングカーのサスペンションの運動解析

単位系は[ファイル]>[プロパティ]>[単位]からインチポンド秒とする。

メカニズムデザインの使用

・Pro/ENGINEERを起動

•quarter_suspension.asmを開く

・画面左の設定ボタンをクリック

ツリーフィルター>フィーチャ表示をチェック>OK

・[構成部品をアセンブリに追加<mark>]≌</mark>をクリックし、[profile.prt]を選択

・プロファイルカムをquarter_suspension.asmの近くに移動させる。
 (移動タブをクリックして移動し、終わったら配置タブを再びクリック)
 ・ピンジョイントを定義する。

・データム軸表示をオンにする。

・[配置]>[軸整列]より、[profile.prt]のA_1軸を[hardpoints.prt]のA_1軸に整列させる。

🕘 🔷 他	◆他の部品で整列軸またはエッジを選択します。		
	📓 📘 🏷 🔀 ピン	• % 🔘 🗄	
Ē	2番 移動 フレキシビリティ プロ	パティ	
	 ■ Connection_61 (ピン) ◆ 軸整列 ②① PROFILE:A_1:F6(データ) ③① HARDPOINTS:A_1:F9(う) ● 直線移動 	 ✓ 拘束使用可 拘束タイプ ◎ 整列 オフセット □ 一致 	

- ・データム平面表示をオンにする。
- ・[直線移動]より、[profile.prt]のFRONTデータム平面とquarter_suspension.asmの ASM_TOPデータム平面を選択する。
- ・[オフセット]を24.5とする。

P	・1部品上で点または平面サーフェスを選択します			
	📓 🔲 🏷 🔏 ビン	• 🕺 🗄 整列 🔹 🛅 •		
ſ	配置 移動 フレキシビリティ プロ/	।		
	E Connection_61 (ピン)	☑ 拘束使用可		
モデ	軸整列	均市なイプ		
	◆直線移動 ● PROFILE:FRONT:F3(デ ● ASM_TOP:F2(データム平	10年3477 (反転)		
 ¥		☆☆オンセット • 24.50 •		

をクリックして、定義を確定する。タイヤとプロファイルが離れていても 問題ない

・スナップショット撮影を実施

シミュレーションモデルの作成

- ・プルダウンメニューから、[アプリケーション]>[メカニズム]を選択。
- ・右側のショートカットボタンから、[カム-フォロワー結合を定義]ボタン 💩 をクリック する。
- ・自動選択を選択し、▶ をクリックする。
- ・円柱の図の赤くなっている部分を選択し、[OK]をクリックする。

□ カム-フォロワー結合定義 23 名前 Dam Follower 1 カム1 カム2 特性 サーフェス/カーブ ▼ ● ●
深さ表示の設定 自動 前面参照 後面参照 中心参照
深さ n OK キャンセル 運択 32 1つまたは非数のアイテムを選択します。 OK OK キャンセル

・カム2を選択し、次にタイヤの外側の円柱サーフェスを選択し、[OK]をクリックする。 ・[OK]をクリックする。

■ カム-フォロワー結合定義 名前 Cam Follower 1 カム1 カム2 特性 サーフェス/カーブ ● ● 自動選択 反転
深さ表示の設定 自動 前面参照 後面参照 後面参照 水 一次の参照 アーン参照 アン 深さ 1
OK キャンセル 連択 33 1つまたは複数のアイテムを選択します。 0K ドャンセル メハー

 ・

 ・
 やクリックして、
 プロファイルをクリックする。
 ・マウスを動かすことによって、
 プロファイルカムを
 回転させる。

・タイヤが押し上げられたり、引き下げられたりし、 すべてのサスペンションの部品が一緒に動くことを 確認する。

・スナップショットを保存。

ſ	۲ 🛄	ラッグ	
l	10	20	
L	🔽 X:	ナップショット	
L	_ ந	シトスナップショット ―――	
N			
L		U	
I	スナッ	プショット 拘束	
l	80	Snapshot1	
М			
f	~		
I	*		
l			
ſ.	X		
l			
l			
l			
l			
l	▶ 7 ²	ドバンスドラッグオブション	
l		問いる	
l			
		📋 選択	S
		1アイテムを選択します。	
		OK キャンセル	

次にプロファイルカムとグランドボディの間の ピンジョイントにサーボモーターを作成します。 [サーボモーターを定義]ボタン う をクリック する。

[サーボモーター定義]ダイアログボックスで、 名前をデフォルトのServoMoter1とし、[被 駆動エンティティ]もデフォルトの「運動軸」として、 プロファイルのピンジョイントを選ぶ。

[プロファイル]タブで[仕様]で「速度」を選び、 [マグニチュード]は「一定」、 定数[A]に対して[360](360度/秒)を入力し、 [OK]をクリックする。

サーボモーターのシンボルが[グラフィック] ウィンドウのピンジョイントに現れる。

🛄 サーボモーター定義	
名前	
Servo Motor 1	
タイプ プロファイル	
- 初期角度	
තින -66.5859 deg	
$\rightarrow B = \tau_{-1}$	
A 360	
- 757	
□ 位置 □ 位置 □ 建度	
OK 適用 キャンセル	

運動解析の作成と実行

[メカニズム解析]ショーカットボタン ≫ をクリックして、名前をAnalysis Definition1 のままにし、

と入力し、解析を実行する。

プロファイルカムが回転し始め、タイヤを 垂直に押し上げ、サスペンションの部品が 動く。

🛄 解析定義	X	
C 名前 ———————————————————————————————————		
AnalysisDefinition1		
\$17		
キネマティック	•	
プリファレンス モーター 外部荷垂		
○ グラフィック表示		
開始時間 0		
長さおよびフレーム率	•	
終了時間 2		
フレームカウント 201		
フレーム率 100		
最小インターバル 0.01		
~ Dックエンティティ		
	l à	
	XI	
	• 🗠 📗	
<u>ー 初期コンフィギュレーション</u>		
◎ カレント		
◯ スナップショット: Snapshot1 🔹	රිත්	
OK 実行 キャ	っしせル	

[解析メジャー結果を生成]ボタンをク リックします。

[メジャー結果]ダイアログ ボックスで、 [新規メジャーの作成]ボタンをクリック します。

[名前]を「Vertical_Wheel_Travel」と入 カします。

[タイプ]は「位置」を選択し、 susp_wheel_center.prtのデータム点 「PNT20」と、ASM_DEF_CSYSのGCSを 選択します。(右図参照) [コンポーネント]は「Z-コンポーネント」 を選び、[評価方法]は「時間ステップ ごと」のままにします。

[OK]をクリックし定義を確定します。

[メジャー結果]ダイアログボックスから、 [結果セット]で「AnalysisDefinition1」を選び、[選択した結果セットに対して選択したメジャーをグラフ化]ボタン ≥ をクリック してメジャーをグラフ化する。

グラフは右図のようになり、車輪中心の 中心点の垂直位置を示します。 このメジャーは車輪が移動する道路の プロファイルに影響する。

[メジャーの定義]ダイアログボッ クスで、[名前]を「Shock_Travel」と 入力します。 [タイプ]を「分離」にし、 hardpoints.prtの 「SHOCK_FRAME」とft_rocker.prt の「ROCKER_SHOCK」を選択しま す。 [OK]をクリックして定義を確定しま す。

先ほどの手順と同様にして、メジャーをグラフ化します。

グラフは右図のようになり、衝 突の移動距離を示します。

[メジャーの定義]ダイアログボックス で、[名前]を「Camber_Angle」と入力 します。 [タイプ]を「ボディ」にし、 「fr_upright.asm」を選択します。 [特性]では「方向」を選び、[オイラー コンポーネント]では「1」を選択します。 (これは回転メジャーがX軸に沿って 定義することを意味します。) [座標系]はデフォルトのままとし、[評 価方法]は「時間ステップごと」としま す。

[OK]をクリックして定義を確定します。

先ほどの手順と同様にして、メジャーをグラフ化します。

グラフは右図のようになり、 キャンバ角を示します。 キャンバ角とは自動車の車輪 により作られる角度であり、特 に前部または後部から見たと きの車輪の垂直軸と乗り物の 垂直軸の間の角度です。

右図から、キャンバ角は平坦 地帯上では約91度に設定され、 タイヤが盛り上がり部分と窪 みを超えるとき、キャンバ角が それぞれ92.5度と89.5度に変 わることがわかります。

